Semi-parallel time-like surfaces in Lorentzian spacetime forms
نویسندگان
چکیده
منابع مشابه
Embedding graphs in Lorentzian spacetime
Geometric approaches to network analysis combine simply defined models with great descriptive power. In this work we provide a method for embedding directed acyclic graphs (DAG) into Minkowski spacetime using Multidimensional scaling (MDS). First we generalise the classical MDS algorithm, defined only for metrics with a Riemannian signature, to manifolds of any metric signature. We then use thi...
متن کاملWhy is spacetime Lorentzian?
We expand on the idea that spacetime signature should be treated as a dy-namical degree of freedom in quantum field theory. It has been argued that the probability distribution for signature, induced by massless free fields, is peaked at the Lorentzian value uniquely in D=4 dimensions. This argument is reviewed, and certain consistency constraints on the generalized signature (i.e. the tangent ...
متن کاملSpacelike Willmore surfaces in 4-dimensional Lorentzian space forms
Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in S, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds...
متن کاملRigidity of time-flat surfaces in the Minkowski spacetime
A time-flat condition on spacelike 2-surfaces in spacetime is considered here. This condition is analogous to the constant torsion condition for curves in a three-dimensional space and has been studied in [2, 5, 6, 13, 14]. In particular, any 2-surface in a static slice of a static spacetime is time-flat. In this paper, we address the question in the title and prove several local and global rig...
متن کاملNull helices in Lorentzian space forms
In this paper we introduce a reference along a null curve in an n-dimensional Lorentzian space with the minimun number of curvatures. That reference generalizes the reference of Bonnor for null curves in Minkowski space-time and it is called the Cartan frame of the curve. The associated curvature functions are called the Cartan curvatures of the curve. We characterize the null helices (that is,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 1997
ISSN: 0926-2245
DOI: 10.1016/s0926-2245(96)00036-8